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ABSTRACT

The concept of E-Commerce is another milestone in the world of shopping of any products. As well as, in the
medical field, ratings and reviews will assist to connecting the patients with right doctors and improvement in hospitals.
Since the recommender system helps in predicting the likeliness of user towards any product. But the limitation it faces is
the unfairness in the rating given by the users intentionally or unintentionally. This affects the result of prediction
mechanisms. In recent years, several attack detection algorithms have been proposed to handle this issue. Unfortunately,
their applications are restricted by various constraints. The proposed system will reduce the unfair rating problem based
on the algorithm that detects malicious attackers and removes their ratings. This algorithm ensures that the
recommendations given are reliable. This work can be applied for any multidisciplinary application based on the rating
system.
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INTRODUCTION

Different software systems often need to exchange data with each other, and a Web service is a
method of communication that allows two software systems to exchange this data over the internet. A
recommender system is an extensive class of Web applications that involve predicting user responses to
options based on the user preference in the past. They are a useful alternative to search algorithms since it
helps the users discover items they might not have found by themselves. They are categorized into two:

e Content-based systems examine properties of the items recommended.

® Collaborative filtering systems recommend items based on similarity measures between users and/or
items. The items recommended to a user are those preferred by similar users.

The recommender system is now getting vulnerable because of the problems faced by the filtering
approaches. Taking this as advantage attackers injects malicious profiles to affect the actual rating and also
affects the recommendations results. In the recent past several algorithms have been designed to detect the
malicious attacks. The algorithms face lots of issues such as the inability to handle missing values in the user-
item matrix, high false alarm rate, low detection rate, and some algorithms expect a balanced number of
normal and malicious ratings to solve them but this scenario cannot be applied in the reality. Some algorithms
are well on paperwork but fail to solve the issues in real time. The Beta protection solves these issues with the
help of three phase algorithm.

The numbers of transactions that happen over the internet are growing exponentially each day. While
picking a product/service users to have a lot of options. So selecting the appropriate product/service is really
difficult for a user. Customer’s decision to purchase a particular product solely depends on the rating available
for the product. Now a lot of attackers are altering the rating to promote or demote the product’s reputation.
So now the correctness of rating is put to doubt. In order to filters, malicious contents a lot of algorithms are
put forth. This paper implements an algorithm to improve the correctness of the ratings given in web services.

RELATED WORKS

The online rating systems prevailing in the market allows us to rate a product, service or other users.
These ratings are manipulated by the attackers to promote or de-motivate a value of product/service/user.
To identify the attackers as the first step that has to be done as generating real world data. To create data sets
this project works on various algorithms. There is a rating challenge, new rating aggregation algorithm, unfair
rating generators and attack models. These modules help us to generate a data set that is not available now.
Because the above modules ensure on the fact that the data set that comes out is close to actual data in the
ratings.

The rating is generated by the user as part of competition [8]. In this, the user is asked to provide a
malicious rating in the system without being detected. Then the rater is awarded based the rate of success. In
[1] a detection algorithm (signal based filtering) was adopted to pick the malicious raters. After the
competition many observations were made: The attacks were mostly straight forward. The detector was able
to pick the attack profiles easily. Only a few attackers adjusted their ratings manually and attacked the system.
They were successful in achieving their objectives. But the above-mentioned categories of attackers were few
in numbers.

A collaborative recommender using any of the common algorithms can be exploited by attackers
without a great degree of knowledge of the system. There have been some recent research efforts aimed at
detecting and reducing the effects of profile injection attacks. Several metrics for analyzing rating patterns of
malicious users and algorithms designed specifically for detecting such attack profiles have been introduced.
Developing a multi-strategy approach [2] to attack defense which including supervised and unsupervised
classification approaches, time-series analysis, vulnerability analysis, and anomaly detection.

Attacks on recommender systems can affect the quality of the prediction for many users, resulting in

decreasing overall user satisfaction with the system. The paper [3] proposed and investigated the use of
statistical metrics for detecting patterns of shilling attackers in a recommender system. They also proposed the
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use of an additional metric, RDMA, to measure a user’s disagreement with the other users in the database,
weighted by the inverse rating frequency of her rated items. They intend to further improve RDMA, as well as
study other rating patterns for attackers.

It [4] proposes to use Neyman-Pearson statistical detection to identify attack profiles and show how
to statistically model the standard attacks that have been proposed to date. This analysis shows that the
success of the PCA-based detector is largely due to the unrealistic manner in which items are rated in attack
profiles of standard attacks. With this realization, they show how it is possible to create an effective attack
which is undetectable by the PCA detector with a simple modification of the Average attack. To address the
detection of such obfuscated attacks, their model as an attacked dataset as a multivariate Gaussian mixture
model and design supervised and unsupervised Neyman-Pearson detectors based on this model. These
detectors significantly out-perform the PCA detector on obfuscated attacks.

The possibility of obfuscating attacks has been considered previously, where three different
obfuscation strategies were proposed. These strategies represent ad hoc modifications of the standard attack
models that an attacker might employ in order to avoid detection. No guiding principle is employed in the
design of these obfuscations. An effective obfuscation strategy must try to minimize the statistical differences
between genuine and attack profiles. They have seen that an attack profile that is undetectable by the PCA
detector must reduce the differences in filter selection that are keys to the success of this detector.

In [4] have discussed profile injection attacks and developed statistical models for their detection. It is
clear that attack and detection can result in an arms race scenario between the system manager and attacker.
It is important to know the limits of this arms race and work an interesting theory. Nevertheless, their work
shows that the optimal attacks are not random, but exploit explicit vulnerabilities in the recommendation
algorithms. It is possible [5] to mount successful attacks against collaborative recommender systems without
substantial knowledge of the system or users. The examination of the segment attack, a very effective
reduced-knowledge attack, also demonstrated the vulnerability of the item-based algorithm, which was
previously thought to be relatively robust. User’s trust in a recommender system will, in general, be affected
by many factors, and the trustworthiness of a system, its ability to earn and deserve that trust, is likewise a
multifaceted problem. However, an important contributor to users’ trust will be their perception that the
recommender system really does what it claims to do, which is to represent evenhandedly the tastes of a large
cross-section of users, rather than to serve the ends of a few unscrupulous attackers.

While current detection algorithms are able to use certain characteristics of shilling profiles to detect
them, they suffer from low precision and require a large amount of training data. The authors [6] provide an
in-depth analysis of shilling profiles and describe new approaches to detect malicious collaborative filtering
profiles. In particular, it exploits the similarity structure in shilling user profiles to separate them from normal
user profiles using unsupervised dimensionality reduction. It presents two detection algorithms; one based on
PCA, while the other uses PLSA. Clearly, our work is only a starting point for building highly robust
recommender systems. One direction would be developing algorithms, which treat attack profiles differently
from noisy data and also use some distinctive features based on voting patterns for further increasing the
precision of shilling detection. More theoretical work on the stability of popular recommender algorithms will
add significantly to the state-of-the-art in personalization.

PROPOSED SYSTEM

The Beta protection algorithm comprises of three phases. In each phase, the abnormal users are
being identified. Once all the phases are over then there will be abnormal users detected from each phase. If a
user is identified as an abnormal user in at least two of the three phases then the user is declared as a
malicious user and his/ her ratings will be removed from the overall system.
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Figure 1 Beta Protection

In this phase, the alpha and beta values are calculated from adding the number of non-zero entries
and the number of zero entries respectively. Then by using the Beta Distribution formula for two distinct
parameters F(p) will be calculated. Then expected value E(p) is also calculated from the matrix. Then as
mentioned in the algorithm, substitute the value of ¢ =0.000064 in the following formula:

U2 o (1)

From that equation, identify the B, value and if E,, = E(p). then the user is consider as abnormal.
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Alpha and Beta Calculations-C ount no. of Zeros for a User
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Figure 2 Phase 1

Phase 2

The phase two starts with the transforming the actual matrix into a new matrix with entries of values
as m, n, |, h and 0.In this phase, the values of F(p) and E(p) are identified. Then as mentioned in the algorithm,
substitute the value of @; =0.00142 in the following formula:

Q3=_|fhw_f::p:' (2)

From that equation, identify the B}, value and if the value of E(p)<Ejuyr.then the user is judged abnormal.
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Figure 3 Phase2

Phase 3

The phase two starts with the transforming the actual matrix into a new matrix with entries of values
as m,n, |, h and 0.In this phase, the values of F(p) and the values of E(p) are identified. Then as mentioned in
the algorithm, substitute the value of ; =0.00142 in the following formula:

Q A

-1
=g
From that equation, identify the B, value and if Bipper = E(p), then the user is judged abnormal.

After the completion of three phases, if a user is identified as an abnormal user in at least two of the

three phases then the user is declared as a malicious user and his/ her ratings will be removed from the overall
system.
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Figure 4 Phase3

RESULTS AND DISCUSSION

This work has implemented using Java Programming. In figure 5 shows that the input file
contains 100000 ratings for 1682 Items rated by 943 users. The figure 6 shows that the input file has
converted in the form Ul Matrix. In figure 7 shows that Ul matrix has converted to transform matrix with
the value of n, |, m and h based on the rating. The figures 8,9 and 10 shows that the result of Phasel,
Phase2, and Phase3. Finally the abnormal and normal users are concluded by beta protection and
displayed in figure 11.
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Figure 8 PHASE 1 RESULT
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Prior Probability
While calculating F(p) for a particular user, identify appropriate prior probability (p(x)) value in order
to make the readings work fine. This probability always affects the way in which the final outcome that is been
generated. The formula to identify f(p) is given by:

F(p| a,B)=(gamma(a+B))/(gamma(a)*gamma(B)) *p(x)* 1 *(1 - p(x))F1..(4)

While refining the values of p(x)-prior probability, find that assigning yield good results p(x)=0.9.The
following table will show the results that are been recorded.

Table 1: The different range of P(x) value and corresponding result

SI.No P(x) Value Abnormal Users Detected
1 0.9 66 users
2 0.8 39 users
3 0.7 25 users
4 0.6 33 users

This table suggests that the ratings detected when the p(x) is 0.9 yields good result while comparing the other
results.

Transformed Matrix
The transformed matrix from phase2 will have alpha and beta that is being calculated with respect to
“I" as 2 and “h” as 4.This is because, exempts the least possible rating and highest ratings. If changes the alpha

and beta calculation, then there will be the difference in the outcome.

The alpha and beta values are used in the calculations of equation (4) and in finding E(p).

E(p)=a/(a+B) ....(5)
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Table 2: The different alpha and beta values (phase 2) and its corresponding result

S. No Alpha and Beta in Transformed Matrix Output
1 Beta as 2 and Alpha as 4 66 Users
2 Beta as 3 and Alpha as 5 307 Users

The output suggests that assuming the value of alpha and beta as 2 and 4 yields effective results compared to
the values of alpha -3 and beta -5 in the overall result.

CONCLUSION

The experimental results obtained from the study suggests that the fine tuning the values of prior
probability, alpha and beta will always have greater effects on the overall outcome. This system detects the
malicious users quite well. The important factor that comes into play is the quantile value that helps us
identifying the value of Bn. This work proves that improve detection rate and reduce false alarm rate, track
attack with lesser failure rate, ability to solve missing value problem and alter the benchmark values if
necessary.

The system works fine while working on few thousands of data. But now the amount data that is
being created is very large. So this system can be put use in real time once the range of data in which it works
is increased. This is possible when some other factors are included in the system. This work can be applied for
any multidisciplinary application.
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